Abstract
It is unclear whether measurement of limb or conduit artery blood flow during recovery from exercise provides an accurate representation of flow to the muscle capillaries where gas exchange occurs. To investigate this, we: (a) examined the kinetic responses of femoral artery blood flow (QFA), estimated muscle capillary blood flow (Qcap) and estimated muscle oxygen uptake (VO2m) following cessation of exercise; and (b) compared these responses to verify the adequacy of O2 delivery during recovery. Pulmonary VO2 (VO2p) was measured breath by breath, QFA was measured using Doppler ultrasonography, and deoxy-haemoglobin/myoglobin (deoxy-[Hb/Mb]) was estimated by near-infrared spectroscopy over the rectus femoris in nine healthy subjects during a series of transitions from moderate knee-extension exercise to rest. The time course of Qcap was estimated by rearranging the Fick equation [i.e. Qcap(t) alpha VO2m(t)/deoxy-[Hb/Mb](t)], using the primary component of Vo2p to represent VO2m and deoxy-[Hb/Mb] as a surrogate for arteriovenous O2 difference. There were no significant differences among the overall kinetics of VO2m (tau, 31.4+/-8.2 s), QFA [mean response time (MRT), 34.5+/-20.4 s] and Qcap (MRT, 31.7+/-14.7 s). The VO2m kinetics were also significantly correlated (P<0.05) with those of both QFA and Qcap. Both QFA and Qcap appear to be coupled with VO2m during recovery from moderate knee-extension exercise, such that extraction falls (thus cellular energetic state is not further compromised) throughout recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.