Abstract
The power graph P(G) of a finite group G is the undirected simple graph with vertex set G, where two elements are adjacent if one is a power of the other. In this paper, the matching numbers of power graphs of finite groups are investigated. We give upper and lower bounds, and conditions for the power graph of a group to possess a perfect matching. We give a formula for the matching number for any finite nilpotent group. In addition, using some elementary number theory, we show that the matching number of the enhanced power graph P_e(G) of G (in which two elements are adjacent if both are powers of a common element) is equal to that of the power graph of G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.