Abstract

It is well-known that the problem of matching two relational structures can be posed as an equivalent problem of finding a maximal clique in a (derived) graph. However, it is not clear how to apply this approach to computer vision problems where the graphs are hierarchically organized, i.e., are trees, since maximal cliques are not constrained to preserve the partial order. We provide a solution to the problem of matching two trees by constructing the association graph using the graph-theoretic concept of connectivity. We prove that, in the new formulation, there is a one-to-one correspondence between maximal cliques and maximal subtree isomorphisms. This allows us to cast the tree matching problem as an indefinite quadratic program using the Motzkin-Straus theorem, and we use replicator dynamical systems developed in theoretical biology to solve it. Such continuous solutions to discrete problems are attractive because they can motivate analog and biological implementations. The framework is also extended to the matching of attributed trees by using weighted association graphs. We illustrate the power of the approach by matching articulated and deformed shapes described by shock trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.