Abstract

In its most general form, graph matching refers to the problem of finding a mapping f from the nodes of one given graph g1 to the nodes of another given graph g2 that satisfies some constraints or optimality criteria. For example, in graph isomorphism detection [130], mapping f is a bijection that preserves all edges and labels. In subgraph isomorphism detection [173], mapping f has to be injective such that all edges of g1 are included in g2 and all labels are preserved. Other graph matching problems that require the constructions of a mapping f with particular properties are maximum common subgraph detection [118, 129] and graph edit distance computation [131, 151].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.