Abstract
Computed tomographic colonography (CTC) combined with a computer aided detection system has the potential for improving colonic polyp detection and increasing the use of CTC for colon cancer screening. In the clinical use of CTC, a true colonic polyp will be confirmed with high confidence if a radiologist can find it on both the supine and prone scans. To assist radiologists in CTC reading, we propose a new method for matching polyp findings on the supine and prone scans. The method performs a colon registration using four automatically identified anatomical salient points and correlation optimized warping (COW) of colon centerline features. We first exclude false positive detections using prediction information from a support vector machine (SVM) classifier committee to reduce initial false positive pairs. Then each remaining CAD detection is mapped to the other scan using COW technique applied to the distance along the centerline in each colon. In the last step, a new SVM classifier is applied to the candidate pair dataset to find true polyp pairs between supine and prone scans. Experimental results show that our method can improve the sensitivity to 0.87 at 4 false positive pairs per patient compared with 0.72 for a competing method that uses the normalized distance along the colon centerline (p<0.01).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.