Abstract

Process technology advances have made multimillion gate field programmable gate arrays (FPGAs) a reality. A key issue that needs to be solved in order for the large-scale FPGAs to realize their full potential lies in the design of their segmentation architectures. Channel segmentation designs have been studied to some degree in much of the literature; the previous methods are based on experimental studies, stochastic models, or analytical analysis. In this paper, we address a new direction for studying segmentation architectures. Our method is based on graph-theoretic formulation. We first formulate a problem of finding the optimal segmentation architecture for two input routing instances and present a polynomial-time optimal algorithm to solve the problem. Based on the solution to the problem, we develop an effective and efficient multi-level matching-based algorithm for general channel segmentation designs. Experimental results show that our method significantly outperforms the previous work. For example, our method achieves average improvements of 18.2% and 8.9% in routability in comparison with other work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.