Abstract

Most of the inflationary models that are in agreement with the Planck data rely on the presence of non-renormalizable operators. If the connection to low energy particle physics is made, the renormalization group (RG) introduces a sensitivity to ultraviolet (UV) physics that can be crucial in determining the inflationary predictions. We analyse this effect for the Standard Model (SM) augmented with non-minimal derivative couplings to gravity. Our set-up reduces to the SM for small values of the Higgs field, and allows for inflation in the opposite large field regime. The one-loop beta functions in the inflationary region are calculated using a covariant approach that properly accounts for the non-trivial structure of the field space manifold. We run the SM parameters from the electroweak to the inflationary scale, matching the couplings of the different effective field theories at the boundary between the two regimes, where we also include threshold corrections that parametrize effects from UV physics. We then compute the spectral index and tensor-to-scalar ratio and find that RG flow corrections can be determinant: a scenario that is ruled out at tree level can be resurrected and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.