Abstract

With exploiting massive spectrum resources, millimeter wave (mmWave) communications significantly improve the offloading capability for future mobile edge computing (MEC) techniques, which however is constrained by blockage problem in dynamic environments. In this paper, we study the resource allocation problem for the conceived mmWave MEC system with dynamic offloading process, in which the UEs are characterized by being mobile and having the imperfect knowledge of the offloading tasks coming. By introducing the multi-objective Markov decision process (MOMDP), the resource allocation problem is modeled by simultaneously minimizing the delay and energy consumption, where jointly considering the multi-beam assignment (mBA) and beamwidth and power optimization (BPO). To tackle this problem, we innovatively propose a matching-aided-learning (MaL) resource allocation scheme, with the aid of a learnable weight based attention mechanism (LW-AM) for adapting the dynamic offloading process. In particular, our MaL scheme includes many-to-one matching (M2O-M) based mBA algorithm and deep deterministic policy gradient (DDPG) based BPO algorithm, which are executed iteratively and converge with relatively low number of iterations. The simulation results show the practical value of the proposed MaL, which can approach the performance of benchmark scheme with perfect knowledge of offloading tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call