Abstract

It is shown that one-dimensional photonic bandgap structures are capable of simultaneously satisfying the phase and group-velocity matching conditions for second-harmonic generation involving extremely short light pulses. When these conditions are satisfied, an optical frequency doubler utilizing photonic bandgap structures provides a means for increasing the rate of growth of the second-harmonic signal as a function of the nonlinear-optical interaction length relative to structures designed for quasi-matched interactions and affords possibilities for enhancing the frequency doubling efficiencies independently of the matching length in the bulk nonlinear material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call