Abstract

Matched-mode processing schemes are presented to estimate the frequency, velocity, depth, and range information of a time-harmonic point source moving uniformly in stratified oceanic waveguides. Three linear modal filtering approaches (frequency spectral decomposition by a single receiver, spatial spectral decomposition by a horizontal receiving array, and eigenfunction decomposition by a vertical receiving array) are first discussed to provide an overview for possible approaches to localize a moving source. An iterative nonlinear extrapolation algorithm involving only the fast Fourier transform is then employed to reduce the observation time by about an order less than that required by the linear frequency method. Physical insights of the Doppler effect in these inversion procedures are discussed in detail. Based on these insights, practical criteria for choosing processing parameters are established so that they can be applicable to all range-independent waveguides. Numerical results calculated by these methods of both shallow water and deep ocean examples are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.