Abstract

Abstract This paper applies the matched-field processing (MFP) method to leakage localization in a viscoelastic pipe. The viscoelasticity of pipe wall is included in the governing equations of transient wave via the generalized Kelvin-Voigt model and its effect is finally translated into a frequency-dependent wave speed. Then, a leak is localized by MFP via a 1D search of leak location along the pipe, independent of the leak size. Transient experiments with viscoelastic pipe in the Water Engineering Laboratory at University of Perugia and in the Water Resources Research Laboratory at Hong Kong University of Science and Technology are studied. Experimental results demonstrate that the inclusion of pipe wall viscoelasticity and using more frequencies (instead of using only resonant frequencies) improve significantly the leak localization accuracy. It is shown that the MFP leak localization is accurate even for a small leak (the flow ratio of leak and main pipe is approximately 10%) in a noisy environment: among 50 transient experiments, the maximum error of MFP leak localization is only 1.14 m and in the other 49 experiments the error is always lower than 1 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.