Abstract

A method of analysis based upon matched asymptotic expansions is proposed for a cracked specimen which is subjected to longitudinal shear (mode III) loading. This gives the small-scale yielding estimate of linear fracture mechanics as a first approximation, and provides systematic refinements which take account of the nonlinear interaction between the elastic and the plastic regions. Explicit solutions can be generated for any specimen which is amenable to a linear elastic analysis. Fracture parameters, such as crack opening displacement and the Jintegral, are expressed as power series in the ratio of applied stress to yield stress, and three terms are given explicitly. These are defined from linear elastic solutions alone. The edge-cracked strip and cracking from a semi-circular notch are studied as examples. Comparison with an exact solution for the former geometry suggests that the three-term expansions give useful results up to 75 % of limit load. The latter example is new and shows the effect of a notch on a crack at loads beyond the normal range of validity of linear elastic fracture mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.