Abstract

With the aim of a more effective representation of reliability assessment for real industry, in the last years concepts like dynamic fault trees (DFT) have gained the interest of many researchers and engineers (dealing with problems concerning safety management, design and development of new products, decision analysis and project management, maintenance of industrial plant, etc.). With the increased computational power of modern calculators is possible to achieve results with low modeling efforts and calculating time. Supported by the strong mathematical basis of state space models, the DFT technique has increased its popularity. Nevertheless, DFT analysis of real application has been more likely based on a specific case to case resolution procedure that often requires a great effort in terms of modeling by the human operator. Moreover, limitations like the state space explosion for increasing number of components, the constrain of using exponential distribution for all kind of basic events constituting any analyzed system and the ineffectiveness of modularization for DFT which exhibit dynamic gates at top levels without incurring in calculation and methodological errors are faces of these methodologies. In this paper we present a high level modeling framework that exceeds all these limitations, based on Monte Carlo simulation. It makes use of traditional DFT systemic modeling procedure and by replicating the true casual nature of the system can produce relevant results with low effort in term of modeling and computational time. A Simulink library that integrates Monte Carlo and FT methodologies for the calculation of DFT reliability has been developed, revealing new insights about the meaning of spare gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.