Abstract
As more non-coding RNAs are discovered, the importance of methods for RNA analysis increases. Since the structure of ncRNA is intimately tied to the function of the molecule, programs for RNA structure prediction are necessary tools in this growing field of research. Furthermore, it is known that RNA structure is often evolutionarily more conserved than sequence. However, few existing methods are capable of simultaneously considering multiple sequence alignment and structure prediction. We present a novel solution to the problem of simultaneous structure prediction and multiple alignment of RNA sequences. Using Markov chain Monte Carlo in a simulated annealing framework, the algorithm MASTR (Multiple Alignment of STructural RNAs) iteratively improves both sequence alignment and structure prediction for a set of RNA sequences. This is done by minimizing a combined cost function that considers sequence conservation, covariation and basepairing probabilities. The results show that the method is very competitive to similar programs available today, both in terms of accuracy and computational efficiency. Source code available from http://mastr.binf.ku.dk/
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.