Abstract

BackgroundThe incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. Lyme borreliosis is caused by the bacterium Borrelia burgdorferi sensu lato (s.l.) and in western Europe, the hard tick Ixodes ricinus is the most important vector.MethodsOver a 15-year period (2004–2018), we monitored the monthly abundance of I. ricinus ticks (nymphs and adults) and their B. burgdorferi s.l. infection status at four different elevations on a mountain in western Switzerland. We collected climate variables in the field and from nearby weather stations. We obtained data on beech tree seed production (masting) from the literature, as the abundance of Ixodes nymphs can increase dramatically 2 years after a masting event. We used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN).ResultsWe found that the NIP decreased by 78% over the study period. Inter-annual variation in the NIP was explained by the mean precipitation in the present year, and the duration that the DNA extraction was stored in the freezer prior to pathogen detection. The DIN decreased over the study period at all four elevation sites, and the decrease was significant at the top elevation. Inter-annual variation in the DIN was best explained by elevation site, year, beech tree masting index 2 years prior and the mean relative humidity in the present year. This is the first study in Europe to demonstrate that seed production by deciduous trees influences the density of nymphs infected with B. burgdorferi s.l. and hence the risk of Lyme borreliosis.ConclusionsPublic health officials in Europe should be aware that masting by deciduous trees is an important predictor of the risk of Lyme borreliosis.Graphical

Highlights

  • The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America

  • The density of infected nymphs (DIN) is often estimated as the product of two other variables, the density of nymphs (DON) and the nymphal infection prevalence (NIP), the latter being the percentage of nymphs infected with B. burgdorferi s.l. [15]

  • Overview of the statistical analyses For brevity, we present the analyses of the NIP and DIN

Read more

Summary

Introduction

The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and Canada [3,4,5,6,7,8]. To understand the epidemiology of tick-borne diseases, it is critical to identify the ecological factors that influence the density of infected ticks because this variable determines the risk of infection to vertebrate hosts, including humans [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call