Abstract

Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50-90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.