Abstract
This brief investigates the master-slave synchronization problem of delayed neural networks with general time-varying control. Assuming a linear feedback controller with time-varying control gain, the synchronization problem is recast into the stability problem of a delayed system with a time-varying coefficient. The main theorem is established in terms of the time average of the control gain by using the Lyapunov-Razumikhin theorem. Moreover, the proposed framework encompasses some general intermittent control schemes, such as the switched control gain with external disturbance and intermittent control with pulse-modulated gain function, while some useful corollaries are consequently deduced. Interestingly, our theorem also provides a solution for regaining stability under control failure. The validity of the theorem and corollaries is further demonstrated with numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.