Abstract
We present the master (i.e., unique) behavior of the squared capillary length-the so-called Sugden factor-as a function of the temperaturelike field along the critical isochore, asymptotically close to the gas-liquid critical point of about twenty (one-component) fluids. This master behavior is obtained using the scale dilatation of the relevant physical fields of the one-component fluids. The scale dilatation method introduces the fluid-dependent scale factors in a manner analog to the linear relations between physical fields and scaling fields needed by the renormalization theory applied to any physical system belonging to the Ising-like universality class. The master behavior for the Sugden factor satisfies hyperscaling. It can be asymptotically fitted by the leading terms of the theoretical crossover functions for the correlation length and the susceptibility in the homogeneous domain, recently obtained from massive renormalization in field theory. In the absence of corresponding estimation of the theoretical crossover functions for the interfacial tension, we define the range of the temperaturelike field where the master leading power law can be practically used to predict the singular behavior of the Sugden factor, in conformity with the theoretical description provided by the massive renormalization scheme within the extended asymptotic domain of the one-component fluid "subclass."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.