Abstract

Transcription factors that trigger major developmental decisions in plants and animals are termed "master regulators". Such master regulators are classically seen as acting on the top of a regulatory hierarchy that determines a complete developmental program, and they usually encode transcription factors. Here, we introduce master regulators of flowering time and flower development as examples to show how analysis of molecular interactions and gene-regulatory networks in plants has changed our view on the molecular mechanisms by which these factors control developmental processes. A picture has emerged that emphasizes a complex combinatorial interplay in determining cell-type transcriptional programs, and a high level of feedback control. The expression of master regulators themselves is usually regulated by multiple factors integrating environmental and endogenous spatiotemporal cues. Master regulatory transcription factors regulate gene expression by different mechanisms, including modifications in chromatin status in the bound regions. A poorly understood phenomenon is how developmental master regulators exert functions in different cell- and organ types. This is especially relevant for those factors that have important functions in several developmental processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.