Abstract
In the paper two models implemented to forecast the hourly solar irradiance with a day in advance are described. The models, based on Artificial Neural Networks (ANN), are generated by a master optimization process that defines the best number of neurons and selects a suitable ensemble of ANN.The two models consist of a Statistical (ST) model that uses only local measured data and a Model Output Statistics (MOS) that corrects Numerical Weather Prediction (NWP) data. ST and MOS are tested for the University of Rome “Tor Vergata” site. The models are trained and validated using one year data. Through a cross training procedure, the dependence of the models on the training year is also analyzed.The performance of ST, NWP and MOS models, together with the benchmark Persistence Model (PM), are compared. The ST model and the NWP model exhibit similar results. Nevertheless different sources of forecast errors between ST and NWP models are identified. The MOS model gives the best performance, improving the forecast of approximately 29% with respect to the PM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.