Abstract

We present a master equation describing the interaction of light with dielectric objects of arbitrary sizes and shapes. The quantum motion of the object, the quantum nature of light, as well as scattering processes to all orders in perturbation theory are taken into account. This formalism extends the standard master equation approach to the case where interactions among different modes of the environment are considered. It yields a genuine quantum description, including a renormalization of the couplings and decoherence terms. We apply this approach to analyze cavity cooling of the center-of-mass mode of large spheres. Furthermore, we derive an expression for the steady-state phonon numbers without relying on resolved-sideband or bad-cavity approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.