Abstract

A master equation approach for the description of dark-state polaritons in coherently driven atomic media is presented. This technique provides a description of light-matter interactions under conditions of electromagnetically induced transparency (EIT) that is well suited for the treatment of polariton losses. The master equation approach allows us to describe general polariton-polariton interactions that may be conservative, dissipative, or a mixture of both. In particular, it enables us to study dissipation-induced correlations as a means for the creation of strongly correlated polariton systems. Our technique reveals a loss mechanism for stationary-light polaritons that has not been discussed so far. We find that polariton losses in level configurations with nondegenerate ground states can be a multiple of those in level schemes with degenerate ground states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.