Abstract

The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of < 0.1% applying current EUCAST CBPs. Error rates were > 0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.