Abstract
BackgroundIn the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis.MethodsChronic intestinal inflammation was induced in male rabbits with intra-gastric inoculation of Eimeria magna oocytes. Rabbits with chronic inflammation were treated with ketotifen (10 mg/day) or saline (Placebo) for 2 days. Villus and crypts cells were isolated from the rabbit intestine using the Ca++ chelation technique. Na/K-ATPase activity was measured as Pi from cellular homogenate. BBM vesicles (BBMV) were prepared from villus and crypt cells and uptake studies were performed using rapid filtration technique with 3H-Glutamine. Western blot analyses were done using B0AT1 and SN2 specific antibodies.ResultsIn villus cells, Na-glutamine co-transport inhibition observed during inflammation was completely reversed by ketotifen, a mast cell stabilizer. In contrast, in crypt cells, Na-glutamine co-transport stimulation was reversed to normal levels by ketotifen. Kinetic studies demonstrated that ketotifen reversed the inhibition of B0AT1 in villus cells by restoring co-transporter numbers in the BBM, whereas the stimulation of SN2/SNAT5 in crypts cells was reversed secondary to restoration of affinity of the co-transporter. Western blot analysis showed that ketotifen restored immune-reactive levels of B0AT1 in villus cells, while SN2/SNAT5 levels from crypts cell remained unchanged.ConclusionIn the present study we demonstrate that mast cells likely function as a common upstream immune pathway regulator of the Na-dependent glutamine co-transporters, B0AT1 in villus cells and SN2 in crypts cells that are uniquely altered in the chronically inflamed small intestine.
Highlights
IntroductionIn the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5)
In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells, while it is stimulated in crypt cells
We showed that the mechanism of inhibition of B0AT1 was secondary to a reduction in the number of BBM co-transporters whereas the stimulation of SN2/SNAT5 was secondary to enhanced affinity of the co-transporter for glutamine
Summary
In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). Known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. The aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis. In the chronically inflamed rabbit small intestine we demonstrated that B0AT1 was inhibited in villus cells while SN2/SNAT5 was stimulated in crypt cells [9]. We showed that the mechanism of inhibition of B0AT1 was secondary to a reduction in the number of BBM co-transporters whereas the stimulation of SN2/SNAT5 was secondary to enhanced affinity of the co-transporter for glutamine
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.