Abstract

To explore the role of chemokines in mast cell chemotaxis and accumulation at sites of inflammation, we first investigated the response of human mast cells to 18 different chemokines by induction of intracellular calcium mobilization in the human mast cell line, HMC-1. Only a subgroup of CXC chemokines defined by the conserved sequence motif glutamic acid-leucine-arginine (ELR) tripeptide motif, which included interleukin-8 (IL-8), growth-regulated oncogene  (GRO), neutrophil-activating peptide-2 (NAP-2), and epithelial cell–derived neutrophil activating peptide-78 (ENA-78), induced calcium flux in the cells. These observations suggested that the receptor CXCR2 (IL-8RB) should be expressed on the surface of these cells. Using the RNAse protection assay, CXCR2 mRNA, but not CXCR1 (IL-8RA) mRNA expression was detected in HMC-1 cells. Flow cytometry analysis documented the surface expression of CXCR2. A binding analysis performed with125I-IL-8 determined that there were approximately 3,600 high affinity IL-8 binding sites per HMC-1 cell, with a calculated kd of 1.2 to 2 nmol/L. The activity of this receptor was further explored using IL-8, which was found to induce dose-dependent chemotactic and haptotactic responses in both HMC-1 cells and in vitro cultured human cord blood–derived mast cells. These results show the expression of functional CXCR2 receptors on the surface of human mast cells, which may play an important role in mast cell recruitment during the genesis of an inflammatory response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.