Abstract
Abstract We investigate a kinematic scaling relation between the baryonic mass and the flat velocity dispersion, i.e., mass–velocity dispersion relation (MVDR), from the brightest cluster galaxies (BCGs) to the galaxy clusters. In our studies, the baryonic mass of BCGs is mainly estimated by photometry. The velocity dispersion profiles are explored with the integrated field unit by Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). For the first time, we reveal two significant results with 54 MaNGA BCGs: (1) the flat velocity dispersion profiles; (2) a tight empirical relation on the BCG-cluster scale together with cluster samples, i.e., MVDR, log ( M bar / M ⊙ ) = 4.1 − 0.1 + 0.1 log ( σ los / km s − 1 ) + 1.6 − 0.3 + 0.3 , with a tiny lognormal intrinsic scatter of 10 − 1 + 2 % . This slope is identical to the acceleration relation in galaxy clusters, which is reminiscent of the spiral galaxies, albeit at a larger characteristic acceleration scale. The residuals of the MVDR represent a Gaussian distribution, displaying no correlations with four properties: baryonic mass, scale length, surface density, and redshift. Notably, the MVDR on the BCG-cluster scale provides a strict test, which disfavors the general prediction of the slope of three in the dark matter model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.