Abstract

AbstractTransport of butyric acid (BA) through a supported liquid membrane (SLM) containing phosphonium ionic liquid (IL) Cyphos IL-104 and dodecane occurs by two mechanisms. The first is related to the physical solubility of undissociated acid in dodecane in the form of a monomer or dimer and the second to the reactive extraction of acid by IL. Although the model of pertraction indicates that increasing the mean concentration of acid in the feed, c F,lmv, increases the participation of pertraction based on the physical solubility; in the tested range of c F,lmv from 0 kmol m−3 to 0.45 kmol m−3 it does not play an important role and at the highest c F,lmv value, less than 10 % of the overall BA transport were achieved. The presence of IL in SLM considerably increases the value of the overall mass transfer coefficient in pertraction at low BA concentrations. However, at c F,lmv > 0.4 kmol m−3 its values are similar for SLMs with and without IL. Compared to lactic acid, the pertraction of BA through the same SLM is about five times faster. Reactive transport of BA is connected with the back transport of water via reverse micelles decomposition and formation on the extraction and stripping interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.