Abstract

We investigate the mass–metallicity relationship of star-forming galaxies by analyzing the absorption line spectra of ∼200,000 galaxies in the Sloan Digital Sky Survey. The galaxy spectra are stacked in bins of stellar mass, and a population synthesis technique is applied yielding the metallicities, ages, and star formation history of the young and old stellar population together with interstellar reddening and extinction. We adopt different lengths of the initial starbursts and different initial mass functions for the calculation of model spectra of the single stellar populations contributing to the total integrated spectrum. We also allow for deviations of the ratio of extinction to reddening R V from 3.1 and determine the value from the spectral fit. We find that burst length and R V have a significant influence on the determination of metallicities, whereas the effect of the initial mass function is small. The R V values are larger than 3.1. The metallicities of the young stellar population agree with extragalactic spectroscopic studies of individual massive supergiant stars and are significantly higher than those of the older stellar population. This confirms galaxy evolution models where metallicity depends on the ratio of gas to stellar mass and where this ratio decreases with time. Star formation history is found to depend on galaxy stellar mass. Massive galaxies are dominated by stars formed at early times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.