Abstract

We present the manifestly covariant Lagrangian of a massless polarized particle that implies all dynamic and algebraic equations as the conditions of extreme of this variational problem. The model allows for minimal interaction with a gravitational field, leading to the equations, coinciding with Maxwell equations in the geometrical optics approximation. The model allows also a wide class of nonminimal interactions, which suggests an alternative way to study the electromagnetic radiation beyond the leading order of geometrical optics. As a specific example, we construct a curvature-dependent interaction in Schwarzschild spacetime, predicting the Faraday rotation of polarization plane, linearly dependent on the wave frequency. As a result, the Schwarzschild spacetime generates a kind of angular rainbow of light: waves of different frequencies, initially linearly polarized in one direction, acquire different orientations of their polarization planes when propagated along the same ray.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call