Abstract

The sixth generation (6G) mobile wireless networks are expected to provide massive ultra-reliable and low-latency communications (mURLLC) for data services, which require extremely stringent quality-of-services (QoS) with massive connectivity. Rate splitting (RS) multiple access schemes have been proposed recently for tackling the difficulty of the massive access yielded by a large number of mobile users (MUs) requesting to connect to a single base station. Massive multiple-input and multiple-output (massive-MIMO) communication is considered a promising solution to serve massive MUs in 6G wireless networks. However, how to apply RS schemes into massive-MIMO techniques to support the massive access has not been sufficiently studied. In this paper, we propose to integrate RS schemes with massive-MIMO techniques to achieve mURLLC transmissions under a Nakagamir <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$m$</tex> fading wireless channel. First, we establish the system model for the integrated RS and massive-MIMO schemes. Then, we derive closed-form expressions for the signal-to-interference-plus-noise ratios (SINRs) under a Nakagami- <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$-m$</tex> fading channel and obtain the channel capacity. Finally, we use numerical analyses to validate and evaluate our proposed RS and massive-MIMO integrated schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.