Abstract

Extensive integration of power electronics apparatuses complicates the modern power grid and consequently necessitates time-domain transients study for its planning and operation. In this work, a heterogeneous computing architecture utilizing the CPU and graphics processing unit (GPU) is proposed for the efficient study of interactions between a power grid network and massive utility-scale battery energy storage systems (BESSs). The device-level electromagnetic transient (EMT) simulation aiming at enhanced fidelity of the BESS is conducted simultaneously with electro-mechanical transient stability (TS) simulation which suffices system-level dynamic security assessment. Since the reservation of a large amount of energy storage units is computationally intensive for the CPU, the concurrent multi-streaming, multi-threading capability of GPU is exploited to achieve asynchronous sequential-parallel processing, so that the proposed EMT-TS co-simulation can flexibly harness all available computing resources. The multi-rate scheme is adopted for further computational burden alleviation in addition to achieving timely information exchange. It shows that the heterogeneous computation of an IEEE 118-bus system integrated with a substantial number of distributed batteries becomes feasible following the achievement of a remarkable speedup of over 200, and the device- as well as system-level accuracy are validated by MATLAB/Simulink<sup>&#x00AE;</sup> and DSATools<sup>TM</sup>/TSAT simulation, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call