Abstract
As our expectations of what computer systems can do and our ability to capture data improves, the desire to perform ever more computationally intensive tasks increases. Often these tasks, comprising vast numbers of repeated computations, are highly interdependent on each other - a closely coupled problem. The process of Landscape-Evolution Modelling is an example of such a problem. In order to produce realistic models it is necessary to process landscapes containing millions of data points over time periods extending up to millions of years. This leads to non-tractable execution times, often in the order of years. Researchers therefore seek multiple orders of magnitude reduction in the execution time of these models. The massively parallel programming environment offered through General Purpose Graphical Processing Units offers the potential for multiple orders of magnitude speedup in code execution times. In this paper we demonstrate how the time dominant parts of a Landscape- Evolution Model can be recoded for a massively parallel architecture providing two orders of magnitude reduction in execution time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.