Abstract

Optimizing gas turbines is a complex multi-physical and multi-component problem that has long been based on expensive experiments. Today, computer simulation can reduce design process costs and is acknowledged as a promising path for optimization. However, performing such computations using high-fidelity methods such as a large eddy simulation (LES) on gas turbines is challenging. Nevertheless, such simulations become accessible for specific components of gas turbines. These stand-alone simulations face a new challenge: to improve the quality of the results, new physics must be introduced. Therefore, an efficient massively parallel coupling methodology is investigated. The flow solver modeling relies on the LES code AVBP which has already been ported on massively parallel architectures. The conduction solver is based on the same data structure and thus shares its scalability. Accurately coupling these solvers while maintaining their scalability is challenging and is the actual objective of this work. To obtain such goals, a methodology is proposed and different key issues to code the coupling are addressed: convergence, stability, parallel geometry mapping, transfers and interpolation. This methodology is then applied to a real burner configuration, hence demonstrating the possibilities and limitations of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.