Abstract

Machine intelligence has become a driving factor in modern society. However, its demand outpaces the underlying electronic technology due to limitations given by fundamental physics, such as capacitive charging of wires, but also by system architecture of storing and handling data, both driving recent trends toward processor heterogeneity. Task-specific accelerators based on free-space optics bear fundamental homomorphism for massively parallel and real-time information processing given the wave nature of light. However, initial results are frustrated by data handling challenges and slow optical programmability. Here we introduce a novel amplitude-only Fourier-optical processor paradigm capable of processing large-scale ∼ ( 1000 × 1000 ) matrices in a single time step and 100 µs-short latency. Conceptually, the information flow direction is orthogonal to the two-dimensional programmable network, which leverages 10 6 parallel channels of display technology, and enables a prototype demonstration performing convolutions as pixelwise multiplications in the Fourier domain reaching peta operations per second throughputs. The required real-to-Fourier domain transformations are performed passively by optical lenses at zero-static power. We exemplary realize a convolutional neural network (CNN) performing classification tasks on 2 megapixel large matrices at 10 kHz rates, which latency-outperforms current graphic processing unit and phase-based display technology by 1 and 2 orders of magnitude, respectively. Training this optical convolutional layer on image classification tasks and utilizing it in a hybrid optical-electronic CNN, shows classification accuracy of 98% (Modified National Institute of Standards and Technology) and 54% (CIFAR-10). Interestingly, the amplitude-only CNN is inherently robust against coherence noise in contrast to phase-based paradigms and features a delay over 2 orders of magnitude lower than liquid-crystal-based systems. Such an amplitude-only massively parallel optical compute paradigm shows that the lack of phase information can be accounted for via training, thus opening opportunities for high-throughput accelerator technology for machine intelligence with applications in network-edge processing, in data centers, or in pre-processing information or filtering toward near-real-time decision making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call