Abstract

Multipoint aerodynamic design optimization involves no more than tens of flight conditions, which cannot thoroughly represent the actual demand. A comprehensive evaluation of the performance may consider hundreds or even thousands of flight conditions, and this leads to a massively multipoint optimization problem. Existing optimization methods are inefficient in such cases. This paper presents a surrogate-assisted gradient-based optimization architecture that efficiently solves massively multipoint design problems. To avoid the curse of dimensionality, surrogate models are constructed only in the low-dimensional space spanned by flow condition variables. With the aerodynamic functions and gradients computed by surrogate models, efficient gradient-based optimization is performed to find the optimal design. To ensure convergence, an adaptive sampling criterion is proposed to refine the surrogate models. In a transonic aircraft wing design case, the results show that the optimal design found by the proposed method with 342 missions yields a fuel burn reduction by a factor of two as compared to a regular multipoint optimal design. This work highlights the demand and provides an efficient way to conduct massively multipoint optimization in aircraft design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.