Abstract

Employing massively distributed antennas brings radio access points (RAPs) closer to users, enabling aggressive spectrum reuse that can bridge gaps between the scarce spectrum resource and extremely high connection densities in future wireless systems. Examples include the cloud radio access network (C-RAN), ultradense network (UDN), and cell-free massive multiple-input, multiple-output (CF-mMIMO) systems. These systems are usually designed in the form of fiber wireless communications (FWC), where distributed antennas or RAPs are connected to a central unit (CU) through optical fronthauls. A large number of densely deployed antennas or RAPs require an extensive infrastructure of optical fronthauls. Consequently, the cost, complexity, and power consumption of the network of optical fronthauls may dominate the performance of the entire system. This article provides an overview and outlook on the architecture, modeling, design, and performance of massively distributed antenna systems (DAS) with nonideal optical fronthauls. Complex interactions between optical fronthauls and wireless access links require optimum designs across the optical and wireless domains by jointly exploiting their unique characteristics. It is demonstrated that systems with analog radio-frequency-overfiber (RFoF) links outperform their baseband-overfiber (BBoF) or intermediate-frequency-overfiber (IFoF) counterparts for systems with shorte fiber length and more RAPs, which are all desired properties for future wireless communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call