Abstract

We study the coupling of MSSM fields to heavy modes through cubic superpotential interactions in F-theory SU(5) GUTs. The couplings are calculated by integrating the overlap of two massless and one massive wavefunctions. The overlap integral receives contributions from only a small patch around a point of symmetry enhancement thereby allowing the wavefunctions to be determined locally on flat space, drastically simplifying the calculation. The cubic coupling between two MSSM fields and one of the massive coloured Higgs triplets present in SU(5) GUTs is calculated using a local eight-dimensional SO(12) gauge theory. We find that for the most natural regions of local parameter space the coupling to the triplet is comparable to or stronger than in minimal four-dimensional GUTs thereby, for those regions, reaffirming or strengthening constraints from dimension-five proton decay. We also identify possible regions in local parameter space where the couplings to the lightest generations are substantially suppressed compared to minimal four-dimensional GUTs. We further apply our results and techniques to study other phenomenologically important operators arising from coupling to heavy modes. In particular we calculate within a toy model flavour non-universal soft masses induced by integrating out heavy modes which lead to FCNCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.