Abstract
Abstract Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.