Abstract

Micro/Nano fluidic biochips are used to automate the clinical diagnosis, DNA sequencing, automated drug discovery and real time bio-molecular recognition. One of attractive usages of biochips is Lab-on-chip (LOC). Lab-on-Chip technology is a promising replacement for biomedical and chemical apparatus. Two main types of micro fluidic based biochips are used: continuous-flow based and digital micro fluidic biochips (DMFB). In DMFBs, liquids, in the form of droplets, are controlled independently and concurrently over a two dimensional array of cells (or electrodes).Digital micro fluidic biochips provide high ability to con gure and fault tolerance.In this paper, a new architecture for DMFB with purpose of balancing among the parameters of flexibility, efficiency, cost, and completion time of biological experiments, is presented. In the new architecture, a FPGA-based structure is used, which increase flexibility and paralellizing assay operations. Experiments showthat, the execution time of scheduling, routing, and simulation are improved in comparison with FPPC architecture about 2.54%, 18.76% and 12.52%, respectively in cost of 21% overhead in the number of controlling pins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.