Abstract
BackgroundMassive open online courses (MOOCs) have the potential to make a broader educational impact because many learners undertake these courses. Despite their reach, there is a lack of knowledge about which methods are used for evaluating these courses.ObjectiveThe aim of this review was to identify current MOOC evaluation methods to inform future study designs.MethodsWe systematically searched the following databases for studies published from January 2008 to October 2018: (1) Scopus, (2) Education Resources Information Center, (3) IEEE (Institute of Electrical and Electronic Engineers) Xplore, (4) PubMed, (5) Web of Science, (6) British Education Index, and (7) Google Scholar search engine. Two reviewers independently screened the abstracts and titles of the studies. Published studies in the English language that evaluated MOOCs were included. The study design of the evaluations, the underlying motivation for the evaluation studies, data collection, and data analysis methods were quantitatively and qualitatively analyzed. The quality of the included studies was appraised using the Cochrane Collaboration Risk of Bias Tool for randomized controlled trials (RCTs) and the National Institutes of Health—National Heart, Lung, and Blood Institute quality assessment tool for cohort observational studies and for before-after (pre-post) studies with no control group.ResultsThe initial search resulted in 3275 studies, and 33 eligible studies were included in this review. In total, 16 studies used a quantitative study design, 11 used a qualitative design, and 6 used a mixed methods study design. In all, 16 studies evaluated learner characteristics and behavior, and 20 studies evaluated learning outcomes and experiences. A total of 12 studies used 1 data source, 11 used 2 data sources, 7 used 3 data sources, 4 used 2 data sources, and 1 used 5 data sources. Overall, 3 studies used more than 3 data sources in their evaluation. In terms of the data analysis methods, quantitative methods were most prominent with descriptive and inferential statistics, which were the top 2 preferred methods. In all, 26 studies with a cross-sectional design had a low-quality assessment, whereas RCTs and quasi-experimental studies received a high-quality assessment.ConclusionsThe MOOC evaluation data collection and data analysis methods should be determined carefully on the basis of the aim of the evaluation. The MOOC evaluations are subject to bias, which could be reduced using pre-MOOC measures for comparison or by controlling for confounding variables. Future MOOC evaluations should consider using more diverse data sources and data analysis methods.International Registered Report Identifier (IRRID)RR2-10.2196/12087
Highlights
Massive open online courses (MOOCs) are free Web-based open courses available to anyone everywhere and have the potential to revolutionize education by increasing the accessibility and reach of education to large numbers of people [1]
The MOOC evaluations are subject to bias, which could be reduced using pre-MOOC measures for comparison or by controlling for confounding variables
We have described the study findings using the following categories for MOOC evaluation: research design, aim, data collection methods, data analysis methods, and analysis and interpretation
Summary
Massive open online courses (MOOCs) are free Web-based open courses available to anyone everywhere and have the potential to revolutionize education by increasing the accessibility and reach of education to large numbers of people [1]. One way to ensure the quality of MOOCs is through the evaluation of the course in a systematic way with the goal of improvement over time [2]. Massive open online courses (MOOCs) have the potential to make a broader educational impact because many learners undertake these courses. Despite their reach, there is a lack of knowledge about which methods are used for evaluating these courses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.