Abstract
BackgroundGene fusions derive from chromosomal rearrangements. The resulting chimeric transcripts are often endowed with oncogenic potential. Furthermore, they serve as diagnostic tools for the clinical classification of cancer subgroups with different prognosis and, in some cases, they can provide specific drug targets. To date, many efforts have been carried out to study gene fusion events occurring in tumor samples. In recent years, the availability of a comprehensive next-generation sequencing dataset for all existing human tumor cell lines has provided the opportunity to further investigate these data in order to identify novel and still uncharacterized gene fusion events.ResultsIn our work, we have extensively reanalyzed 935 paired-end RNA-sequencing experiments downloaded from the Cancer Cell Line Encyclopedia repository, aiming at addressing novel putative cell-line specific gene fusion events in human malignancies. The bioinformatics analysis has been performed by the execution of four gene fusion detection algorithms. The results have been further prioritized by running a Bayesian classifier that makes an in silico validation. The collection of fusion events supported by all of the predictive software results in a robust set of ∼1,700 in silico predicted novel candidates suitable for downstream analyses. Given the huge amount of data and information produced, computational results have been systematized in a database named LiGeA. The database can be browsed through a dynamic and interactive web portal, further integrated with validated data from other well-known repositories. Taking advantage of the intuitive query forms, the users can easily access, navigate, filter, and select the putative gene fusions for further validations and studies. They can also find suitable experimental models for a given fusion of interest.ConclusionsWe believe that the LiGeA resource can represent not only the first compendium of both known and putative novel gene fusion events in the catalog of all of the human malignant cell lines but it can also become a handy starting point for wet-lab biologists who wish to investigate novel cancer biomarkers and specific drug targets.
Highlights
Gene fusions derive from chromosomal rearrangements and the resulting chimeric transcripts are often endowed with oncogenic potential
We believe that the LiGeA resource can represent the first compendium of both known and putative novel gene fusion events in the catalog of all of the human malignant cell lines, but it can become a handy starting point for wet-lab biologists who wish to investigate novel cancer biomarkers and specific drug targets
The presence of the PLM-RARA fusion product is a specific hallmark of acute promyelocytic leukemia (APL) 4 and represents the first example of genefusion targeted therapy 5 that has changed the natural history of this disease
Summary
We have extensively reanalyzed 935 paired-end RNA-seq experiments downloaded from "The Cancer Cell Line Encyclopedia" repository, aiming at addressing novel putative cell-line specific gene fusion events in human malignancies. The collection of fusion events supported by all of the predictive softwares results in a robust set of ∼ 1,700 in-silico predicted novel candidates suitable for downstream analyses. Given the huge amount of data and information produced, computational results have been systematized in a database named LiGeA. The database can be browsed through a dynamical and interactive web portal, further integrated with validated data from other well known repositories. Taking advantage of the intuitive query forms, the users can access, navigate, filter and select the putative gene fusions for further validations and studies. They can find suitable experimental models for a given fusion of interest
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.