Abstract

Habitat restoration measures may result in artificially high breeding density, for instance when nest-boxes saturate the environment, which can negatively impact species' demography. Potential risks include changes in mating and reproductive behaviour such as increased extra-pair paternity, conspecific brood parasitism, and polygyny. Under particular cicumstances, these mechanisms may disrupt reproduction, with populations dragged into an extinction vortex. With the use of nuclear microsatellite markers, we investigated the occurrence of these potentially negative effects in a recovered population of a rare secondary cavity-nesting farmland bird of Central Europe, the hoopoe (Upupa epops). High intensity farming in the study area has resulted in a total eradication of cavity trees, depriving hoopoes from breeding sites. An intensive nest-box campaign rectified this problem, resulting in a spectacular population recovery within a few years only. There was some concern, however, that the new, high artificially-induced breeding density might alter hoopoe mating and reproductive behaviour. As the species underwent a serious demographic bottleneck in the 1970–1990s, we also used the microsatellite markers to reconstitute the demo-genetic history of the population, looking in particular for signs of genetic erosion. We found i) a low occurrence of extra-pair paternity, polygyny and conspecific brood parasitism, ii) a high level of neutral genetic diversity (mean number of alleles and expected heterozygosity per locus: 13.8 and 83%, respectively) and, iii) evidence for genetic connectivity through recent immigration of individuals from well differentiated populations. The recent increase in breeding density did thus not induce so far any noticeable detrimental changes in mating and reproductive behaviour. The demographic bottleneck undergone by the population in the 1970s-1990s was furthermore not accompanied by any significant drop in neutral genetic diversity. Finally, genetic data converged with a concomitant demographic study to evidence that immigration strongly contributed to local population recovery.

Highlights

  • Habitat degradation remains the main cause of decline and extinction of plant and animal species worldwide

  • Following the recommendations of Dakin & Avise [37], we did not exclude that the social mother or the social father can be the biological parent when only one mismatch occurred, due to apparently homozygous or homozygous null genotypes, at a locus affected by null alleles

  • The four putative immigrants detected within the Valais hoopoe population in 2004 were all carrying rare or novel alleles mimicking a genetic signal for demographic expansion in a closed population when applying the heterozygosity test developed by Cornuet & Luikart [42]. These findings suggest that the Valais hoopoe population has been receiving immigrants from genetically well-differentiated populations during the demographic recovery process

Read more

Summary

Introduction

Habitat degradation remains the main cause of decline and extinction of plant and animal species worldwide. It often affects some particular basic ecological requirements of species such as foraging grounds or breeding sites [1]. Cavity-nesters have been affected by the loss of breeding sites as a result of the intensification of sylviculture and agriculture [2]. The removal of snags and old trees by modern forestry and agriculture strongly limits the availability of suitable cavities for hole-nesting birds. Traditional conservation measures for endangered cavity-nesting species rely on habitat conservation management that enhances the availability of natural suitable nesting sites in the landscape. Habitat quality is often so dramatically reduced that supplementing natural cavities with nest-boxes is often necessary, at least during an initial transition period prior to renaturation of forests and hedges [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call