Abstract

Full duplex (FD) communication has emerged as an attractive solution for increasing the network throughput, by allowing downlink (DL) and uplink (UL) transmissions in the same spectrum. However, only employing FD base stations in heterogeneous cellular networks (HCNs) cause coverage reduction, due to the DL and UL interferences as well as the residual loop interference. We, therefore, propose HCNs with half duplex massive multiuser multiple-input multiple-output macrocell base stations (MBSs) to relax the coverage reduction, and FD small cell base stations (SBSs) to improve spectrum efficiency. A tractable framework of the proposed system is presented, which allows to derive exact and asymptotic expressions for the DL and the UL rate coverage probabilities, and the DL and the UL area spectral efficiencies (ASEs). Monte Carlo simulations confirm the accuracy of the analytical results, and it is revealed that the equipping massive number of antennas at MBSs enhances the DL rate coverage probability, whereas increasing FD SBSs increases the DL and the UL ASEs. The results also demonstrate that by tuning the UL fractional power control, a desirable performance in both UL and DL can be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call