Abstract

In light of the challenges posed by the widespread distribution of new energy sources in China and their distance from load centers, the power system must effectively integrate both new energy and thermal power transmission. To address this issue, we propose a dynamic coordinated scheduling model that combines wind, photovoltaic, and thermal power to optimize the profit of the energy complementary delivery system. Additionally, we present an improved ant lion optimization algorithm to investigate the coordinated scheduling and benefit distribution of these three power sources. This paper introduces a cooperative mode for benefit distribution and utilizes an enhanced Shapley value method to allocate the benefits of joint operation among the three parties. The distribution of benefits is based on the contribution of each party to the joint proceeds, considering the profit levels of joint outbound and independent outbound modes. Through our analysis, we demonstrate that the upgraded ant lion optimization algorithm facilitates finding the global optimal solution more effectively within the feasible zone. Furthermore, our suggested three-party combined scheduling model and profit-sharing approach are shown to be superior and feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call