Abstract
In order to improve the efficiency of massive medical images retrieval, against the defects of the single-node medical image retrieval system, a massive medical images retrieval system based on Hadoop is put forward. Brushlet transform and Local binary patterns algorithm are introduced firstly to extract characteristics of the medical example image, and store the image feature library in the HDFS. Then using the Map to match the example image features with the features in the feature library, while the Reduce to receive the calculation results of each Map task and ranking the results according to the size of the similarity. At the end, find the optimal retrieval results of the medical images according to the ranking results. The experimental results show that compared with other medical image retrieval systems, the Hadoop based medical image retrieval system can reduce the time of image storage and retrieval, and improve the image retrieval speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.