Abstract

To determine whether functional changes in in vitro contractility and in vivo gastrointestinal transit accompany the adaptive structural changes seen in jejunal circular muscle after massive intestinal resection, rats were subjected to either surgical resection of 75% of the mid-jejunoileum or a sham operation. Basal stress in response to stretch was similar for both groups on postoperative days 10, 20, 30, and 40. By day 10 after surgery, tissues from resected rats exhibited a significant reduction in bethanechol-stimulated tonic stress and in frequency of phasic contractions. The amplitude of spontaneous phasic activity was significantly increased; however, following cholinergic stimulation, the magnitude of the increase in the amplitude of phasic activity was significantly reduced. Experiments with tetrodotoxin (10(-6) M) indicated a myogenic origin to the reduction in bethanechol-stimulated tonic stress and the reduced frequency and altered amplitude of phasic contractile activity in resected animals. The tonic stress developed in response to depolarization with KCl did not differ significantly between sham-operated and resected rats. Transit studies showed no change in the rate of gastric emptying after resection but did reveal a significant reduction in the velocity of intestinal transit. Thus, following massive intestinal resection the bethanechol-stimulated tonic stress response and phasic contractile activity of circular smooth muscle are significantly reduced, concomitant with altered intestinal transit. The reduction in contractility in the resected animals may be due to an alteration at the level of the smooth muscle receptor and (or) its signal transduction pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call