Abstract

BackgroundCalpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life.ResultsOur investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain.ConclusionsThe analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

Highlights

  • Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes

  • The classical calpains consist of four conserved domains: an N-terminal anchor helix (Nter), a catalytic protease core domain (CysPc) with the two subdomains PC1 and PC2, a C2-like domain (C2L) and a penta-EF-hand domain (PEF), designated here as Nter-CysPc-C2L-PEF

  • Using the evolutionary conservation of distinct calpain modules in diverse groups of eukaryotes, non-classical calpains were proposed to consist of several subfamilies, including the PalB subfamily found in humans, yeasts, fungi, insects and nematodes, the SOL subfamily for animals as well as the Dek1 subfamily that is represented in land plants [3]

Read more

Summary

Introduction

Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. The majority of calpain research has focused on the three ubiquitously expressed classical calpains CAPN1 and CAPN2 in mammals and CAPN11 in birds Both CAPN1 and 2 are closely related 80-kDa proteins and are highly conserved at the sequence and structural levels [13]. Using the evolutionary conservation of distinct calpain modules in diverse groups of eukaryotes, non-classical calpains were proposed to consist of several subfamilies, including the PalB subfamily found in humans, yeasts, fungi, insects and nematodes, the SOL subfamily for animals as well as the Dek subfamily that is represented in land plants [3]. The phylogenetic relationship among the members of nonclassical calpains and the sequential evolution of calpain modules, remains unresolved

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call