Abstract

Massive dolostones replacing build-ups and containing H2S of thermochemical sulfate reduction (TSR) origin occur in the Upper Permian reef and bank deposits, northeastern Sichuan, China, despite the absence of gypsum or anhydrite deposits, which are usually present in TSR cases. Fluid chemistry from fluid incluions and δ13C, δ18O and 87Sr/86Sr values from different diagenetic phases were measured to determine the dolomitization regime, and to assess the relationships between the occurrence of dolomitization and H2S accumulation. Dolomitization was initiated by seawater with slightly increased salinities (penesaline) at shallow depths prior to chemical compaction. The micro- to fine-crystalline cloudy dolomite formed with relatively high Na and Sr contents, and with δ13C, δ18O and 87Sr/86Sr values (2.2‰∼4.8‰, −3.9‰∼-5.0‰ and 0.70724∼0.70746, respectively) inherited from seawater. The evaporation of Permian seawater in back-reef and inter-reef lagoons during sea-level fall and the subsequent seepage reflux into reef-beach bodies led to greater Mg2+and SO42−concentrations in higher-salinity pore waters. Further massive dolomitization was promoted by compactional flow of hotter residual seawater at shallow to intermediate depths and resulted in the formation of fine- to medium-crystalline clean dolomite with lower Na and Sr contents, more depleted δ18O values (-5.1‰∼-6.0 ‰), andδ13C (2.5‰∼4.8 ‰) and87Sr/86Sr values (0.70726∼0.70741) similar to those of the coeval seawater. The relatively closed hydrodynamic system during burial facilitated SO42−preservation. The whole dolomitization process enriched porewater SO42−, which have been almost exhausted by subsequent TSR, accounting for the high present-day concentrations of H2S. The output of this study shows that similar scenarios involving dolomitization driven by condensed MgSO4seawater and H2S accumulations can occur in evaporite-free settings across a broad range and deserves special attention during deep oil/gas exploitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.