Abstract

We study transport and optical properties of the surface states, which lie in the bulk energy gap of a thin-film topological insulator. When the film thickness is comparable with the surface-state decay length into the bulk, the tunneling between the top and bottom surfaces opens an energy gap and form two degenerate massive Dirac hyperbolas. Spin-dependent physics emerges in the surface bands, which are vastly different from the bulk behavior. These include the surface spin Hall effects, spin-dependent orbital magnetic moment, and spin-dependent optical transition selection rule, which allows optical spin injection. We show a topological quantum phase transition where the Chern number of the surface bands changes when varying the thickness of the thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.