Abstract
Hydrothermal liquefaction aqueous phase (HTL-AP) greatly hindered the sustainable development of HTL technology due to its high output and diverse compound distribution. Herein, the antimicrobial behavior, application scenario and acton mechanism of HTL-AP were clarified since an emerging pathogen reduction approach by HTL-AP attracts increasing attention. We studied the molecular cognition and underlying mechanism for phytopathogen control provoked by HTL-AP via multiscale analysis including mycelial morphology, intracellular metabolites and transcriptome. HTL-AP in a very low concentration (only 1.5%) completely inhibited the growth of Botrytis cinerea (B. cinerea) and showed promising potential for seed-borne fungi control. Biochemical analysis revealed that the morphology was significantly changed, the contents of four intracellular compounds were all largely disordered, and activities of six enzymes simultaneously decreased in mycelium after uptake of HTL-AP. Further, the transcriptome analysis revealed the disturbance of the gene expression of B. cinerea in response to HTL-AP stress. Ultra-high differentially expressed genes were enriched, which was significantly distinguished from the reported fungicide agent. HTL-AP mainly acted on metabolic processes of B. cinerea while disruption of genetic information processes and cellular processes were also performed. All four main antimicrobial modes were observed in HTL-AP action, and multiple action pathways of HTL-AP exhibited a synergistic interaction in growth inhibition. The multiscale analysis in this study refreshed the knowledge and cognition of HTL-AP functioned for pathogen control, which was speculated due to the multiple active compounds. HTL-AP showed a high potential for seed-borne fungi control, contributing to the novel renewable and suatainable fungicide agent development and new antimicroial target discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.